Dealing with Uncertainty
An Empirical Study on the Relevance of Renewable Energy Forecasting Methods
Motivation
Motivation

GENERAL
- Traditional demand-focus in the energy forecasting community
- Great variety of solution proposals but few reliable benchmarks
- Domination of time-intensive Trial-and-Error optimization approaches

SCIENCE VIEW
- Low objective comparability of concurring methods based on literature and dissimilar data sets
- Unlikely successful re-implementations due to limited access to crucial information
- Forecasting competitions are rare and time-intensive

INDUSTRY VIEW
- Customers demand robust proves of achievable overall forecast quality for their specific problems
- Complex solutions for individual tasks can scare away normal users
- Experts hardly accept simple black-box tools
Research Questions

Scientific Relevance

1. How strong is the scientific interest in renewable energy forecasting methods?
2. Which methods are the preferred research topics?
3. Can the most promising directions be identified?

Practical Relevance

4. Which methods are currently implemented in the available software products?
5. What are the commonly used quality evaluation criteria?
6. What do users expect of such solutions?
Scientific Relevance
Methodology

STEP 1: DETERMINE TOTAL LITERATURE POPULATION

- Online search in *IEEE, ScienceDirect, SpringerLink* and *WileyOpenLibrary* databases
- Valid publications are book chapters, conference papers and journal articles (2005 – 2015)
- Search query "error AND forecasting AND renewable AND wind AND solar AND method AND NOT production AND NOT demand"

STEP 2: DEFINE REDUCED SAMPLE DATA SET

- Articles published in renewable energy journals (2010 – 2015)
- Only the highest two quantiles (Q1 and Q2) of *SCImago Journal Rank Indicator* are considered
- Manually revised abstracts
Quantitative Analysis

TOTAL PUBLICATIONS
- Preferred channels are journal articles (48.8%) and conference papers (37.8%)
- Average growth of 48.8% p.a.
- Positive trend and peak in 2015

SAMPLE DATA SET
- 93 results from search
- 83 articles from 9 journals after manual revision
- 10% of total population represented in the sample

Table: Sample Data Set

<table>
<thead>
<tr>
<th>Rank</th>
<th>Symbol</th>
<th>Title</th>
<th>SJRQ</th>
<th>SJR</th>
<th>Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>RSER</td>
<td>Renewable and Sustainable Energy Reviews</td>
<td>Q1</td>
<td>3.273</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>TSTE</td>
<td>IEEE Transactions on Sustainable Energy</td>
<td>Q1</td>
<td>2.826</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>SE</td>
<td>Solar Energy</td>
<td>Q1</td>
<td>2.291</td>
<td>27</td>
</tr>
<tr>
<td>11</td>
<td>RE</td>
<td>Renewable Energy</td>
<td>Q1</td>
<td>2.256</td>
<td>27</td>
</tr>
<tr>
<td>13</td>
<td>IET</td>
<td>IET Renewable Power Generation</td>
<td>Q1</td>
<td>2.178</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>ECM</td>
<td>Energy Conversion and Management</td>
<td>Q1</td>
<td>1.861</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>ER</td>
<td>International Journal of Energy Research</td>
<td>Q2</td>
<td>1.106</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>EFP</td>
<td>Energy Sources, Part B: Economics, Planning and Policy</td>
<td>Q2</td>
<td>0.856</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>WEIA</td>
<td>Journal of Wind Engineering and Industrial Aerodynamics</td>
<td>Q2</td>
<td>0.791</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>EPSE</td>
<td>Environmental Progress and Sustainable Energy</td>
<td>Q2</td>
<td>0.620</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>RSE</td>
<td>Journal of Renewable and Sustainable Energy</td>
<td>Q2</td>
<td>0.472</td>
<td>2</td>
</tr>
</tbody>
</table>
Quantitative Analysis

Proposed Stand-Alone Model Classes
- Dominated by Machine Learning (30%), Hybrid Models (29%) and multivariate Stochastic Time Series Models (23%)
- Physical Models (11%) and univariate Stochastic Time Series Models (5%) under-represented

Proposed Combination Types
- Dominated by Machine Learning (40%) and multivariate Stochastic Time Series Models (34%)
- Physical Models (20%) are more frequently used
- Univariate Stochastic Time Series Models (4%) under-represented

<table>
<thead>
<tr>
<th>Combination Type</th>
<th>Physical Model</th>
<th>Stochastic Time Series</th>
<th>Univariate</th>
<th>Multivariate</th>
<th>Similar-Days</th>
<th>Machine Learning</th>
<th>Hybrid Model</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand-alone Model</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>20</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>Part of Hybrid Model</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>17</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>[\Sigma]</td>
<td>22</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>37</td>
<td>1</td>
<td>46</td>
</tr>
</tbody>
</table>
Quantitative Analysis

TEMPORAL EVOLUTION OF PROPOSED METHODS

- No significant changes in observation period (2010 – 2015)
- Machine Learning and multivariate STS alternate
- Positive trend for Physical Models
Qualitative Analysis

Typical Evaluation Problems

- Qualitative evaluation only considers forecast accuracy
- No standardized accuracy measure
- Heterogeneous use cases and experimental settings
- No industry benchmarks available

Proposed Standard Evaluation Protocol [Madsen+04]

- Use MAE, RMSE, MBE measures and/or Skill Scores (SS)
- Apply normalization
- Compare against naïve predictors

Qualitative Analysis

RESULTS

+ RSME (65.1%), MAE (47.0%) and MBE (27.7%) are frequently used
+ Between 0 and 8 simultaneously used error measures per publication (average 2.6)

- Popular combinations are RMSE-MBE (24.1%), RMSE-MAE (22.9%) and RMSE-MAPE (14.5%), only 8% combine RMSE-MAE-MBE
- 20% use tailor-made or undefined error measures
- 26% apply normalization on data or error values
- 32% include naïve benchmark predictors
- 8.4% use NREL data set

Only 1 publication matches all criteria!
Practical Relevance
Methodology

SOFTWARE USER QUESTIONNAIRE
- Targeting users of energy forecasting software
- 56 utility companies contacted
- 13 associations and organizations contacted
- 8 questions aiming at:
 1. Forecast appliance
 2. Underlying energy source
 3. Output evaluation criteria
 4. Additional parameters of interest
 5. Market role

Response rate 30%

SOFTWARE PROVIDER QUESTIONNAIRE
- Targeting energy forecasting software providers listed on German market report
- 29 software companies contacted
- 14 questions aiming at:
 1. Forecast appliance
 2. Underlying energy source
 3. Implemented methods
 4. Additional parameters of interest
 5. Company characteristics

Response rate 21%
Feedback from Software Providers

Solution Scope

- Demand and -price forecasting (37.5% each), 25% for renewable energy
- Handles both conventional and renewable energy sources
- Equally suited for all forecasting horizons

Implemented Methods

- Similar-Days (29%), followed by Machine Learning and Stochastic Time Series models (24%).
- Hybrid (14%) and Physical models (10%) less relevant
- Named algorithms are: *Multi-variate Regression, Neural Networks, k-nearest Neighbors and Support Vector Machines*
Feedback from Software Users

Solution Scope
- 43% use forecasting software
- Focus on demand forecasting (50%), supply (30%) and prices (20%)
- Supply forecasts mostly for renewable energy sources (73%)
- Equally suited for all forecasting horizons

User’s Expectations
- Benefits are increased supply stability, balancing cost estimation and production site identification
- Requirements are appropriate statistical output evaluation measures, robustness of the models and low maintenance efforts

<table>
<thead>
<tr>
<th>Factor</th>
<th>Important</th>
<th>Irrelevant</th>
<th>Abstention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased supply security</td>
<td>76.5%</td>
<td>5.9%</td>
<td>17.6%</td>
</tr>
<tr>
<td>Avoidance of overproduction</td>
<td>64.7%</td>
<td>17.6%</td>
<td>17.6%</td>
</tr>
<tr>
<td>Use of smart grid applications</td>
<td>35.3%</td>
<td>41.2%</td>
<td>23.5%</td>
</tr>
<tr>
<td>Improved demand-site management</td>
<td>58.8%</td>
<td>23.5%</td>
<td>17.6%</td>
</tr>
<tr>
<td>Balancing energy cost estimation</td>
<td>70.6%</td>
<td>17.6%</td>
<td>11.8%</td>
</tr>
<tr>
<td>Production site analysis</td>
<td>64.7%</td>
<td>23.5%</td>
<td>11.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Important</th>
<th>Irrelevant</th>
<th>Abstention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical error measures</td>
<td>92.9%</td>
<td>7.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Technical performance</td>
<td>85.8%</td>
<td>7.1%</td>
<td>7.1%</td>
</tr>
<tr>
<td>Robustness / Adaptability</td>
<td>92.9%</td>
<td>7.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Application usability</td>
<td>71.4%</td>
<td>21.4%</td>
<td>7.1%</td>
</tr>
<tr>
<td>Maintenance efforts</td>
<td>92.9%</td>
<td>7.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Graphical result representation</td>
<td>64.3%</td>
<td>35.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Manual output pre-processing</td>
<td>71.4%</td>
<td>21.4%</td>
<td>7.1%</td>
</tr>
</tbody>
</table>
Feedback from Software Users

Output Evaluation Criteria
- Not limited to accuracy
- Mainly MAPE (24%) and Standard Deviation (20%), followed by MAE and RMSE (16% each)
- Over- and underestimations less important

Market Role
- Transmission System Operator (25%), Supplier (20%), Generator (20%) and Network Operator (10%)
- 15% Others (e.g. planning, construction)
- 10% no classification

<table>
<thead>
<tr>
<th>Scientific Literature</th>
<th>Software Providers</th>
<th>Software Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>65% RMSE</td>
<td>25% SD</td>
<td>24% MAPE</td>
</tr>
<tr>
<td>47% MAE</td>
<td>21% MAPE</td>
<td>20% SD</td>
</tr>
<tr>
<td>28% MBE</td>
<td>21% RMSE</td>
<td>16% RMSE</td>
</tr>
<tr>
<td>25% MAPE</td>
<td>13% MAE</td>
<td>16% MAE</td>
</tr>
<tr>
<td>20% Others</td>
<td>13% Others</td>
<td>2% Others</td>
</tr>
</tbody>
</table>
Summary
Summary

Scientific Relevance
- Unabated interest for more than one decade
- Small but increasing research field in the energy forecasting domain
- Dominating methods are Machine Learning, Hybrid- and multivariate Time Series Regression models
- RMSE is preferred error measure

Practical Relevance
- Available commercial solutions focus on energy demand and -price forecasting
- Quality is determined by maintenance efforts, robustness and output accuracy
- Dominating methods are univariate Similar Days, Machine Learning and Time Series Regression models
- MAPE is preferred error measure
Dealing with Uncertainty

An Empirical Study on the Relevance of Renewable Energy Forecasting Methods

Robert Ulbricht, Anna Thoß, Hilko Donker, Gunter Gräfe and Wolfgang Lehner