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Abstract. The increasing volatility introduced to power grids by re-
newable energy sources makes it necessary that the accuracy of energy
forecasts are improved. Photovoltaic (PV) power plants hold the biggest
share of installed capacity of renewable energy in Germany, so that high
quality PV power forecasts are vital for a cost e�cient operation of the
underlying electrical grid. In this paper, we evaluate multiple Numerical
Weather Prediction (NWP) parameters for their ability to improve PV
power forecasting features. The importance of features is decided by a
Random Forest algorithm. Furthermore, the resulting top ranked fea-
tures are tested by performing PV power forecasts with Support Vector
Regression, Random Forest, and linear regression models.
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1 Introduction

One major part of ensuring the stability of a electricity grid is keeping a �xed
utility frequency, which rises with production and lowers with the consumption
of energy. Until about a decade ago, transmission system operators solved this
problem by simply matching the energy output and dispatch of power plants
to the demand of its consumers. Today, the increasing share of weather depen-
dent renewable energy sources on the consumer's side has been introducing new
volatility to the grid, thus, keeping stability intact is becoming a more complex
task. In Germany, photovoltaic (PV) systems take up the highest share of in-
stalled capacity of renewable energy. PV is able to reach power output rates of
almost 26 GW at midday with a total nominal power of around 40 GWpeak [?].
To generate the same amount of energy one would need about 20 of the bigger
nuclear power plants in Germany, whereas today only eight plants with varying
capacities are still active. To integrate this amount of energy, and still ensure
grid stability, in a cost e�cient way, i.e., without relying on too much expensive
reserve energy, accurate power forecasts for PV are necessary.

One widely used approach for PV power forecasting is based on parametric
modeling of PV power using measurements and numerical weather predictions



(NWP) on varying spatial and temporal scales. A comparison of models was
compiled by Pelland at el. [?]. In recent years, more and more statistical learn-
ing algorithms were used for wind and solar energy predictions. One popular
approach for forecasting solar radiation are arti�cial neural networks (ANN). A
compilation of di�erent ANN models can be found in Mellit [?]. More recent
works that focus on ANN are extending the models with preprocessing steps
such as weather type classi�cations [?], feature selection implemented with, e.g.,
Genetic Algorithms [?] or increasing the input data by adding meteorological
data from numerical weather predictions [?]. There are also many works suc-
cessfully applying and comparing di�erent statistical modeling approaches for
PV energy production forecasting [?,?,?].

In comparison to ANN, Support Vector Regression (SVR) is still less com-
mon for PV power and irradiance forecasts but shows good potential in some
comparisons to other statistical learning methods [?] with numerical weather
prediction features as input [?] on single-site and regional solar radiation values
[?]. There are only a few works that use Random Forest (RF) as a predictor in
the �eld of renewable energy forecasts. One example where RF is successfully
used for electric load forecasting can be found in Jurado et al. [?].

Here, we evaluate Random Forest's ability to assess the importance of nu-
merical weather prediction features for PV power forecasting. The datasets used
in this evaluation and the preprocessing of our data is described in Section 2. In
Section 3, we give a short overview on the statistical learning methods utilized
in this work for PV power predictions, i.e., Random Forest and Support Vector
Regression. The selection of numerical weather forecast features is conducted in
Section 4 and the most important features are evaluated with di�erent regression
models in Section 5.

2 Datasets

In this work, we use the data of 93 PV systems spread across Germany (see
Figure 1) with varying installed capacities from rooftop installations to big
PV parks. These systems are monitored by our industry partner meteocontrol
GmbH1 and are randomly selected from a larger dataset containing PV power
measurements from 2012-01-01 to 2013-12-31. The temporal resolution of these
measurements is 15 minutes and the speci�cations, i.e., orientation, tilt, and
power capacity are known.

2.1 Numerical Weather Predictions

The focus of this work lies on evaluating the usefulness of di�erent weather
parameters of a numerical weather prediction (NWP) system for PV power fore-
casting. NWP models are systems of di�erential equations that use the laws of
physic, �uid dynamics, and chemistry as well as weather observations and mea-
surements as a basis to predict changes in weather situations starting from a

1 meteocontrol GmbH: www.meteocontrol.com
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recent initial state. These calculations are performed on a �xed horizontal and
vertical grid.

Here, we use data from the European Centre for Medium-Range Weather
Forecasts (ECMWF) 2. The ECMWF's Integrated Forecasting System (IFS) pro-
vides single level forecasts covering over 120 parameters in a temporal resolution
of three hours with two major forecasting runs starting at 00 UTC and 12 UTC.

Fig. 1: Locations of 93 PV sys-
tems in Germany (red) and
grid points of ECMWF's NWP
model (blue)

Single level forecasts are forecasts that are av-
eraged over di�erent height levels or forecasts
for speci�c heights (e.g., 2 metre tempera-
ture). These runs are not instantly available
at these times, so that we always use forecasts
from the 12 UTC run of the previous day to
ensure their availability at the point of time of
our prediction. In Figure 1, the grid points of
the ECMWF IFS model are shown with each
grid �eld covering an area of about 12.5km ×
12.5km. As we only use single level forecasts,
there is no need for the vertical expansion of
the grid in our case.

2.2 Data Preprocessing

The NWP model output is interpolated both
temporally and spatially to match the PV sys-
tems' measurements.

Spatial Interpolation In previous works (see
Lorenz et al.[?]), a positive e�ect of averag-
ing NWP radiation forecasts of multiple sur-
rounding grid points instead of using the ge-
ographically nearest forecast was observed. The best results were achieved by
averaging a 4× 4 grid around a PV system's location. Due to the easier imple-
mentation and faster calculation, the spatial interpolation in this work is done
with a distance weighted k-nearest neighbor regression model [?] with k = 16 in
regard to the 4× 4 grid. For consistency, this method of spatial interpolation is
further applied for all other NWP forecasts used in this work.

Temporal Interpolation In case of irradiance forecast parameters, we are utilizing
a clear sky model of Dumortier, described in Fontoynont et al.[?], to interpolate
the data from three hours to 15 minutes. For all other parameters, we apply a
normal linear interpolation. The clear sky interpolation is working in three steps:

1. Calculating clear-sky index k∗3h for 3 hour values:

k∗3h =
Iforec,3h
Iclearsky,3h

2 European Centre for Medium-Range Weather Forecasts: www.ecmwf.int
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2. Linear interpolation of k∗3h to 15 minute values results in k∗15min.
3. Using k∗15min as a factor for Iclearsky,15min with 15 minute resolution:

Iforec,15min = k∗15min · Iclearsky,15min.

With these interpolations, we are now able to generate PV power forecasts
with a resolution of 15 minutes for each of PV system using the following sta-
tistical learning approaches.

3 Statistical Learning Methods

In this section, we introduce the applied statistical learning methods, i.e., Ran-
dom Forest for feature selection and Support Vector Regression for modeling
PV power forecasts. While the two methods construct a regression function f
mapping patterns Xi, consisting of one or more features, to labels yi in di�erent
ways, both algorithms need a dataset Z containing known pattern and label
combinations for training purposes. The mapping can be de�ned as follows:

X1

X2

. . .
XN

 =


x11 x12 . . . x1d
x21 x22 . . . x2d
. . . . . . . . . . . .
xN1 xN2 . . . xNd

 f−→


y1
y2
. . .
yN

 ,

with pattern Xi ∈ Rd, where d denotes the number of features, label yi ∈ R, and
training set size N ∈ N.

3.1 Random Forest

The concept behind the construction of a Random Forest (RF) [?] regressor is
Bagging (Bootstrap aggregation). Bagging makes it possible to "average many
noisy but approximately unbiased models, and hence reduce the variance" [?]
by combining multiple single models. With RF this variance reduction through
correlation reduction of the trees is further improved by selecting input features
in each node (one element of the tree) splitting step at random.

To train a Random Forest model, bootstrapping (random sampling with
replacement) is applied on the training set Z to retrieve B, the number of trees
in the forest, subsets Z∗b = {(x∗1, y∗1), (x∗2, y∗2), . . . , (x∗N , y∗N )}, b = 1, 2, . . . , B. On
each of these subsets a RF tree Tb is grown by applying the following steps until
a stop criterion is reached (e.g., a minimum number of samples belonging to a
newly created node), according to Hastie et al.[?]:

1. Randomly select m ≤ d features of the input pattern.
2. Calculate the best feature for splitting, i.e., the feature that "maximizes the

decrease of some impurity measure" [?].
3. Split the node according to the selected feature into two new nodes.



After �nishing the tree-growing process, the algorithm outputs an ensemble of
trees {Tb | b = 1, 2, . . . , B} and the Random Forest regression function is

fBrf (x) =
1

B

B∑
b=1

Tb(x). (1)

In our implementation, we use the Random Forest regressor method of the
scikit-learn [?] Python package with its standard settings except for the number
of trees. We increased the number of trees from ten to 64 to improve tree diversity
but still keep the computation time at a minimum. This is as well the minimal
recommendation of Oshiro et al. [?], even though they have a di�erent �eld of
use. As a impurity measure (step 2 of the tree-growing algorithm) to decide on
the best splitting criterion/feature, this implementation uses the mean square
error (mse)

Emse =
1

N

N∑
i=1

(z − z′)2. (2)

The Emse for each possible feature split is calculated and the feature with the
highest Emse decrease is selected.

3.2 Support Vector Regression

The basic idea of Support Vector Regression [?] is to �nd the regression function
f that maps patterns to labels by solving the optimization problem

inf
f∈H,b∈R

1

N

N∑
i=1

Lε
(
yi, f(xi + b)

)
+ λ||f ||2H. (3)

Here, λ ∈ R > 0 is a �xed user-de�ned cost parameter and the ε-insensitive
loss function Lε is de�ned as Lε(y, t) = max(0, |y − t| − ε), ε ∈ R > 0. ||f ||2H
describes the squared norm in a so-called reproducing kernel Hilbert space H
induced by an associated kernel function k: X × X → R. The space H contains
all considered models, and the term ||f ||2H is a measure for the complexity of a
particular regression model f [?]. Because of good results in related publications,
e.g., [?,?,?], we use the radial basis function (RBF) kernel requiring another
parameter γ ∈ R > 0.

In summary, there are three user-de�ned parameters, i.e., λ, ε, and γ that
we optimize by applying grid search with 80 di�erent parameter combinations.
Again, we use the SVR implementation of scikit-learn which is based on LIB-

SVM [?].

4 Feature Selection

The main goal of this work is to �nd additional NWP weather parameters that
improve PV power forecasting. Using all available weather parameters of the



No. Feature name Unit

1 100 metre U wind component ms−1

2 100 metre V wind component ms−1

3 10 metre U wind component ms−1

4 10 metre V wind component ms−1

5 2 metre dewpoint temperature K

6 2 metre temperature K

7 Clear-sky direct solar radiation at surface* Jm−2

8 Cloud base height m

9 Evaporation m of water equivalent

10 High cloud cover (0− 1)

11 Large-scale precipitation m

12 Low cloud cover (0− 1)

13 Medium cloud cover (0− 1)

14 Snow density kgm−3

15 Snow depth m of water equivalent

16 Snow evaporation m of water equivalent

17 Snowfall m

18 Surface net solar radiation, clear sky* Jm−2

19 Surface solar radiation* Jm−2

20 Surface solar radiation downwards* Jm−2

21 Total cloud cover (0− 1)

22 Total column ice water kgm−2

23 Total column liquid water kgm−2

24 Total column rain water kgm−2

25 Total column snow water kgm−2

26 Total column water kgm−2

27 Total column water vapour kgm−2

28 Total precipitation m

29 Total sky direct solar radiation at surface* Jm−2

30 Zero degree level m

Table 1: Selection of ECMWF weather forecast feature list. Marked features
(*) are interpolated with a clear sky interpolation method instead of a linear
interpolation.

ECMWF's model would result in feature spaces with over 120 dimensions. This
is not feasible for short-term PV power forecasting with forecast horizons of 15
minutes as the time to calculate a forecast would simply take too much time.
As a result, we want to select less features that still hold the highest possible
additional information for our models.

In literature (e.g., in Guyon and Elissee�[?]), there are two major classes of
feature selection methods: wrapper and �lter. While wrapper methods embed a
regression model into another optimization algorithm, e.g., genetic algorithms,
that try di�erent feature combinations until a stop-criterion is reached and select



the best solution that was found along the search, �lter methods rank single
features by some measure that describe their usefulness for the given task.

As one iteration of a wrapper algorithm would take a lot of time in our
scenario with 93 PV systems, we decided to use a �lter model to achieve a fast
method for evaluating the bene�t of single weather parameters. Instead of using
common measures like Pearson's correlation coe�cient, we apply a comparatively
new approach that is the build-in feature importance ranking of the Random
Forest algorithm.

Preselection of Features With the help of experts in the �eld of meteorology, we
removed all NWP parameters that are irrelevant for PV power forecasting. Thus,
from the about 120 available IFS single level forecast parameters, 30 features
remain for our evaluation. These 30 features are listed in Table 1.

Feature Selection with Random Forest To rank the preselected features, we
use Random Forest's feature importance capabilities. The feature importance is
achieved by traversing all trees with the training dataset and summing the im-
purity criterion (in this case the Emse value) of each node. The Emse is weighted
with the number of samples that were routed to a speci�c node. Thus, features
that were choosen often and early in a trees hierarchy will also receive high im-
portance values. The output of this feature importance algorithm is normalized
to one. Details on Random Forest's feature importance are well discussed in
Genuer et al. [?].

Now, all preselected features are presented to the RF algorithm with the goal
of calculating a regression function to predict power output of each single PV
system. For this, we use the daytime (cosine of the solar zenith angle above 80
degree) feature values of the previous 65 days for training as a similar con�gura-
tion showed good results in previous evaluations [?]. Each of the 93 PV systems
is trained independently for each day of the year 2012 starting at 2012-03-10.
By doing this, we receive the feature importance of every day separately and are
able to evaluate seasonal or daily changes in feature importances.

In Figure 2, the feature importance of all days is averaged over all PV systems
for summer and winter months. In summer, all features are dominated by the
forecast of surface solar radiation (19) and surface solar radiation downwards (20)
with over 50% feature importance. Only the parameters total sky direct solar
radiation at surface (29) and evaporation (9) seem to hold some information for
the resulting PV power output with an importance of about 7.5% each. This
changes when looking at the winter months. The feature importances of 19 and
20 decrease by about one third while the importance of many other features
increase. Noticeably, the zero degree level (30) and low cloud cover (12) as well
as snow depth (14) and snow evaporation (15) become more important for the
forecasting of PV power generation in winter.

In our following experiments, we want to evaluate whether adding weather
parameters to the prediction pattern can improve the quality of PV power fore-
casts. In this �rst approach, we do not di�erentiate between seasons and use the
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Fig. 2: Random Forest feature importances of 30 NWP weather parameters av-
eraged for (a) summer and (b) winter months for all 93 PV systems.

Rank No. Feature name Feature importance

1 19 Surface solar radiation 0.244

2 20 Surface solar radiation downwards 0.178

3 29 Total sky direct solar radiation at surface 0.171

4 9 Evaporation 0.050

5 7 Clear-sky direct solar radiation at surface 0.026

6 18 Surface net solar radiation, clear sky 0.023

7 8 Cloud base height 0.020

8 30 Zero degree level 0.019

9 6 2 metre temperature 0.018

10 16 Snow evaporation 0.017

Table 2: Top ten most important ECMWF weather forecast features ranked by
Random Forest feature importance.

ten highest ranked features of the average feature importance for 2012. These
features are listed ranked by their RF feature importance values in Table 2.

5 Prediction Comparison

Now, we use the most important features obtained in Section 4 for PV power
forecasts. In this evaluation, we train our models at each day of the year 2013
and our training set consists of the previous 65 days as before. The training and
forecasting is done on each PV system separately. Aside from the Random Forest
predictor used to determine the feature importance, we test a linear regression
and Support Vector Regression approach and evaluate if the Random Forest
feature importance is applicable for di�erent learning alogrithms as well.



To measure the quality of the di�erent predictors, we use the Ermse, the root
of the Emse introduced in Equation 2. The Ermse is a good real life measure as
it penalizes high deviations, that would have a higher impact on grid stabilizing
actions in our case, more than small ones.

Instead of testing all possible combinations, we decided to iteratively add the
top ten features to our pattern. Our base pattern (Equation 4) consists of the
latest available measurement values Pmeas according to the considered forecast
horizon ∆t. The di�erent applied pattern/label matchings have the following
structure:

(Pmeas(t−∆t))→ Pmeas(t) (4)

(Pmeas(t−∆t), F eature1(t))→ Pmeas(t) (5)

· · ·
(Pmeas(t−∆t), Feature1(t), Feature2(t), . . . , F eature10(t))→ Pmeas(t) (6)

Figure 3 shows the results of our forecasts for the linear regression, SVR,
and RF models. First, we look at the shortest forecast horizon of 15 minutes in
Figure 3(a). The Ermse values of the forecast models using only measurement
data (features 0) are already good and can not pro�t much from additional
features. Especially after adding the NWP forecast of surface solar radiation,
which was deemed the most important feature in our importance tests, there
is almost no further improvement of the Ermse for the linear and SVR model
anymore. Only Random Forest forecasts acquire their best results with the top
�ve features but the Ermse values are still higher than that of the other two
models.
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Fig. 3: Comparison of Linear Regression, Random Forest, and Support Vector
Regression with increasing input feature count for a prediction horizon of (a) 15
minutes and (b) two hours ahead.



When the temporal di�erence between the most recent measurement and
the forecasted timestep gets bigger, the less important the measurements get.
This is demonstrated in Figure 3(b) for a two hour forecast horizon. The initial
measurement-based forecasts achieve a higher Ermse for a forecast horizon of two
hours than in the 15 minutes case. As before, adding only the most important
feature is already enough to reach the lowest Ermse value for the linear regression
and SVR (only very slight improvements afterwards). Again, the Random Forest
model needs more information, i.e., more features to reach its best forecast with
the lowest Ermse.

In both scenarios, the di�erence between a simple linear regression and the
more sophisticated Support Vector Regression with optimized user-de�ned pa-
rameters is small. In Figure 4, we look at the most important feature, i.e., sur-
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Fig. 4: Scatter plot of measurements and corresponding NWP forecast of surface
solar radiation. The red line indicates the linear regression curve of these two
variables.

face solar radiation, which allows the highest Ermse improvement, in more detail.
Here, the average of all stations' measurements and the respective average of the
surface solar radiation forecasts is compared. The distribution shows that these
parameters hold a strong linear dependency, which is highlighted by a linear re-
gression �t in this �gure. This indicates that the SVR is not able to bene�t from
its ability to model non-linear relations and, therefore, is uncapable of achieving
lower Ermse values than a linear regression.

Due to the fact that there was almost no improvement in adding more than
one NWP feature, we try di�erent input combinations in Figure 5. Because there
was not much of a di�erence between the results of the linear and the SVR model
as well as the shorter computation times of a linear regression, we decided on
testing these combinations only with the linear model. We test three di�erent
models:

� Model 0 : Linear Regression with measurements and all top ranked features
as before (Linear Regr.)
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Fig. 5: Comparison of Linear Regression forecasts with di�erent input feature
combinations for a prediction horizon of (a) 15 minutes and (b) two hours ahead

� Model 1 : Linear Regression with measurements and without the top three
ranked (radiation) features (Linear Regr. 4-10)

� Model 2 : Linear Regression without measurements and with all top ranked
features (Linear Regr. no meas)

In case of our shortest forecast horizon of 15 minutes (Figure 5(a)), the
models using measurements are substantially better than the model without
measurement values. While there are no improvements of the Ermse after adding
feature 1 for Model 0, the three missing features of Model 1 can be (almost
completely) recuperated by adding more NWP features. Although the forecasts
of Model 2 are inferior to measurement-based ones, an improvement is achieved
by adding more of the top ten features. For a forecast horizon of two hours
ahead, measurements are not that important anymore (see Figure 5 (b)). Now,
Model 2, as the forecast does not change with time due to the same NWP
forecast used, is competitive to Model 0 and even better than Model 1, despite
the lack of measurements. There are slight di�erences of Model 2's Ermse values
for 15 minutes and two hours as we �lter the time series in a way that only
time steps where all models generate useable outputs are considered, so that the
Ermse values are calculated on di�erent slightly timeseries. Model 1 is pro�ting
from additional NWP features and able to compensate less information about
the predicted radiation with increasing feature count. Utilizing all information
(Model 0) is still generating the best forecasts, but with an increasing forecast
horizon the di�erence to the other models is increasingly vanishing.

6 Conclusion

The expansion of PV power in the german grid makes it necessary that its fore-
casts become more accurate. To address this task, we evaluate the bene�t of



using additional weather forecast parameters of the ECMWF's NWP model for
PV power predictions applying di�erent regression models. The importance of
all features that are related to the output of a PV system are assessed via Ran-
dom Forest's feature importance algorithm. While there are di�erences between
seasons and weather situations, the averaged results of the feature importance
evaluation show that over 50% of importance are shared by irradiance weather
parameters. This is later on con�rmed by our analysis of PV power forecasts,
that are using the highest ranked features, showing that the quality of power
output forecasts for more than a few minutes ahead is mostly depending on irra-
diance forecasts. Otherwise, for shorter prediction horizons (15 to 30 minutes),
PV power measurements are essential for generating high quality forecasts. These
results are seen with all of the applied regression models, i.e., Support Vector
Regression (SVR), Random Forest, and linear regression. As irradiance and a
PV module's power output are highly linear correlated, SVR is not able to create
better forecasts than the linear regression approach.

In further works, we want to investigate whether there are weather situations
where additional features actually increase the forecast quality, e.g., snow and
fog.
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